点击进入学习 点击进入学习 点击进入学习

四大电解水制氢技术

笔者预言:未来五年,PEM电解水将从小众到主流、实现MW到GW级别的飞跃,SOEC有望迎来实质性发展阶段,AEM也开始逐步进入早期市场。另外,可能迎来颠覆性技术的出现,比如生物、阳光水分子裂解技术。
本文梳理了碱性(ALK)、质子交换膜(PEM)、阴离子交换膜(AEM)和固体氧化物(SOEC)四大电解水技术及欧美发展动态,供业界人士参考。
 
01

导言 

四大电解水制氢技术上图中列出的技术成熟度 (TRL) 为美国能源部2020年时的划分。欧盟2020年时对其SOEC的评估为TRL7,高于美国能源部的TRL5-6。

从材料、性能、效率和成本,上图中四种电解水技术都有自身的优势和挑战。相比碱性电解槽,在特定应用场景(如车规级氢能、波动性可再生能源)中PEM的优势日渐明显,国际上许多新建项目已开始选用PEM电解槽,其市场渗透率预期会逐步扩大。SOEC和AEM作为新兴技术都有巨大潜力,也是欧美研发的重点,但前者在规模量产前在耐久性、制造工艺上还有待提升,后者目前还处在基础材料研发阶段。

美国和欧盟均将PEM和SOEC电解水作为近期研发重点,生物质(Biomass)制氢作为中期目标。另外,美国能源部将直接利用太阳的光和热(光电催化)制氢作为长期研发战略,其三大类制氢路线则具体反映在下图二中各相关技术的成熟度上。

四大电解水制氢技术
四大电解水制氢技术
02

质子交换膜电解槽 

 

四大电解水制氢技术
目前ENAPTER的研发重点是在纯水系统下提升膜的传导性和耐久性,以期达到电流密度 >1A/cm2(小室工作电压1.8V)和衰减速率 <15mV/1000小时。在膜的研发方面,加拿大Ionomr Innovations Inc. 已取得一定的进展,其Aemion+™膜正在解决AEM聚合物结构中不稳定分解机制的根源。
 
04

固体氧化物电解槽 

 

固体氧化物(SOEC)电解槽在高温(700-850℃)下运行,动力学上的优势使其可使用廉价的镍电极。如利用工业生产中高品质的余热(比如能量输入为75%电能+25%水蒸气中的热能),SOEC的系统效率(LHV H2 to AC)近期内有望达到达85%,并在10年内达到欧盟的2030目标90%。SOEC电解槽进料为水蒸气,若添加二氧化碳后,则可生成合成气(Syngas,氢气和一氧化碳的混合物),再进一步生产合成燃料(e-fuels,如柴油、航空燃油)。因此SOEC技术有望被广泛应用于二氧化碳回收、燃料生产和化学合成品,这是欧盟近年来的研发重点。SOEC的另一优势是可逆性,即可逆燃料电池用于可再生能源的存储,这也是欧美的一个长期重点研发课题。 
耐久性是SOEC目前的首要问题,热化学循环,特别是系统停、启时,都会加速老化,降低使用寿命。目前固体氧化物的材料包括通过添加8%氧化钇来提升稳定性的二氧化锆,其分子式为 (ZrO2)0.92(Y2O3)0.08。提升固体氧化物的性能、耐久性和降低操作温度是目前欧美研发的重点。 
美国SOEC代表性公司包括FuelCell Energy和康明斯。在2016-2020间,FuelCell Energy负责了一个美国能源部拨款为300万美元的SOEC研发项目,并完成了下面的指标。

– 电堆效率(LHV H2 to AC)>95%

– 系统效率(LHV H2 to AC)>90%

– 系统效率(LHV, 以电能+热能计)>75%

– 单电池衰减速率 ≤1%/1000小时;电堆衰减速率 ≤2%/1000小时

– 开发子系统,使SOEC能与有间歇性的可再生能源相兼容。 
2021年9月,康明斯从美国能源部获得500万美元拨款,用于SOEC电堆自动化组装、生产的研发。该项目将利用康明斯现有成熟的热喷涂工艺,自动化生产以金属为基础的固体氧化物电堆,从而减少昂贵的烧结工艺,并将所需密封件数量减少50%。该项目为期三年,总预算716万美元,目标是开发60kW固体氧化物电堆自动化组装的标准样板,用于建立年产能为94MW的SOEC电解槽工厂。 
2020年1月,欧盟启动了总预算为975万欧元的SOEC示范项目(其中FCH JU出资700万),旨在五年内将SOEC的技术成熟度由TRL7提升至TRL8,并制定了下面的KPI。
– 系统电能消耗(标准工作状况)≤ 39kW/kgH2
– 电堆衰减速率 ≤ 1.2%/1000小时
– 可运营时间 ≥ 98 %
– 单位投资成本(日产1公斤氢气产能)≤ 2,400欧元
– 年运行、维护成本(日产1公斤氢气)≤ 120欧元 
德国Sunfire是欧洲SOEC技术代表。这家总部位于萨克森州的公司成立于2010年,并在次年收购了一家SOFC公司作为其后来发展的技术核心。基于一种Power-to-Liquid(PtL)工艺,Sunfire于2020年10月在荷兰建成了2.4MW SOEC的项目示范,每小时产氢60公斤用于合成燃料的生产,其系统电能效率(LHV H2 to AC)目标是85%。
四大电解水制氢技术
Sunfire是德国H2Giga计划的积极参与者。本月初该公司和15家由其领导的合作伙伴从德国Federal Ministry of Education and Research (BMBF) 获得3,300万欧元资助,用于SOEC电解槽系统优化、制造工艺和批量生产。 
Sunfire在2021年11月获得了1.09亿欧元的D轮融资(之前其已获得超过1亿欧元的融资),并计划于2023年建成200MW的SOEC电解槽产能。在并购方面,Sunfire在2021年1月收购了瑞士电解槽公司IHT,并于11月在奥地利的一个食品生产中心安装了欧盟首台工作压力为30 bar的3.2MW碱性电解槽。该电解槽是欧盟Demo4Grid示范项目的核心部分,以验证压力型碱性电解槽的商业可行性,在实际市场情况下平衡电网,生产工业用绿氢。该项目为期5年,总预算780万欧元,其中得到FCH JU的290万欧元资助。
四大电解水制氢技术
下图为欧盟2010-2021期间对燃料电池技术在能源领域应用、示范项目(比如热电联供、平衡电网、离网发电)的拨款,其中自2018年来每年用于PEMFC、SOFC和其它类技术的项目资金分别约为7,800万、7,000万和800万欧元(蓝、橙、绿色图例)。主要参与公司、研究机构包括:SolidPower, Sunfire,Ballard,Politecnico di Torino (Polytechnic University of Turin) 和VTT Technical Research Centre of Finland。
四大电解水制氢技术
05

美国氢能研发体系 

 

他山之石,可以攻玉。本节以电解水研发为例,介绍美国以技术成熟度为划分、国家实验室为主导的研发体系。下文中RD&D = Research, Development & Demonstration。
四大电解水制氢技术
技术成熟度(Technology Readiness Level,RTL)评估方法在美国已被航天和国防部门应用了很长时间,以系统的形式按上图分为九级,确定研发产品的材料、工艺状态和生产准备,并配置相应的资源。该工具被证明非常有效可行,不仅可以评估不同研发阶段的需求,而且可为最终产品提供必要的指导。 
美国能源部(DOE)是美国联邦政府负责能源政策制定,行业管理和相关技术研发等职责的行政部门,其下属的17个国家实验室中目前有14个从事和氢能相关的研发。DOE按技术成熟度将电解水研发课题分为三类,并组建相应的联盟(Consortium),从而形成从基础材料、关键零部件到生产制造三级渐进,避免在示范推广阶段出现关键零部件薄弱的局面。另外,DOE提供资助并不仅限于美国本土单位,比如加拿大的巴拉德就前后以各种合同形式获得DOE数千万美元研发资金。
四大电解水制氢技术
基础材料是高端制造的基石。就氢能而言,美国能源部组建了由下面四个材料联盟构成的氢能材料研发Network,以加速早期应用型材料在氢能领域的突破。
四大电解水制氢技术
四大电解水制氢技术
四大电解水制氢技术
四大电解水制氢技术
06

回顾与展望 

 

四大电解水制氢技术
自1800年电解水在英国被发明以来,电解槽的发展已经历了两个多世纪,不同时期的技术进步(尤其是材料的突破)极大地影响了其发展进程。1950年前电解水主要用于由低成本水电来生产合成氨,碱性电解槽是这一时期唯一的技术。1940年代,杜邦公司发明了一种兼具机械、热稳定性和良好质子传输性能的材料,使PEM技术成为可能,并首先应用于航空、军事领域,在1980年代进入商业领域。2010年后,随着光伏、风电的推广及电解槽成本下降使绿氢成为商业上可行的案例,并随全球气候行动共识进入各国能源政策议程。 
未来五年,笔者预期PEM电解水将从小众到主流,实现MW到GW级别的飞跃。随着材料技术的不断突破,SOEC有望迎来实质性发展阶段,AEM也开始逐步进入早期市场。另外,各国对新型制氢研发的投入将不断增大,可能迎来颠覆性技术的出现,比如生物、阳光水分子裂解技术。 
回顾历史,太空技术的发展也极大地推进了燃料电池的研发前沿。20世纪90年代,美国宇航局(NASA)为其外太空计划制定了单元化可再生燃料电池系统(Unitized Regenerative Fuel Cell System)的研发计划,并在本世纪初由Proton OnSite开发了一套以PEM技术为基础的可逆燃料电池。另外,Bloom Energy已商业化的ES-5000能源服务器也源于其为NASA火星项目而开发的固体氧化物技术。 
筚路蓝缕,以启山林。蜚声国际的大连化学物理研究所是我国燃料电池技术的发源地,其最初的研究源于1967年的研制航天氢氧燃料电池的任务。半个世纪后的今天,继圆满完成2021年火星探测任务,国家航天局计划于2033年进行首次载人火星探测,探索在红色的星球上建立永久定居点,使人类在苍茫的宇宙中在地球和火星上相互守望。

下载权限
查看
  • 免费下载
    评论并刷新后下载
    登录后下载
  • {{attr.name}}:
您当前的等级为
登录后免费下载登录 小黑屋反思中,不准下载! 评论后刷新页面下载评论 支付以后下载 请先登录 您今天的下载次数(次)用完了,请明天再来 支付积分以后下载立即支付 支付以后下载立即支付 您当前的用户组不允许下载升级会员
您已获得下载权限 您可以每天下载资源次,今日剩余
点击进入学习

给TA打赏
共{{data.count}}人
人已打赏
CAD教程图文教程首页

如何阵列AutoCAD中的对象

2022-10-17 11:11:58

CAD教程图文教程首页

如何设置CAD标注中文字的位置

2022-10-18 11:11:02

版权声明 1、本网站名称:我要分享网
2、本站网址:https://www.hhkxxw.com
3、本网站的文章来源于各种网络,仅供大家学习与参考,如有侵权,请联系站长QQ:352062239进行删除处理。
4、本站一切资源不代表本站立场,并不代表本站赞同其观点和对其真实性负责。
5、本站一律禁止以任何方式发布或转载任何违法的相关信息,访客发现请向站长举报
6、本站资源大多存储在云盘,如发现链接失效,请联系我们我们会第一时间更新。

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索